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Distortions induced by the K |; surfacelike elastic term in a thin nematic
liquid-crystal film
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We have investigated some of the consequences of the inclusion of a nonzero (and fairly large) K3
term in the elastic free energy of a thin nematic liquid-crystal layer, where K5 is the splay-bend elastic
constant. A sufficiently thin film is predicted to deform spontaneously in zero applied field, for large
enough values of K ;. This deformation breaks the mirror symmetry of the film around its midplane and
disappears at a critical value of the applied field which is a function of sample thickness. In the particu-
lar case where the boundaries favor parallel anchoring, the midplane of the spontaneously deformed lay-
er will contain a nonsingular 7 wall. The existence of this anomalous distortion mode leads to dramatic
changes in the topology of the Fréedericksz phase diagram: the onset of the Fréedericksz transition is
predicted to occur at the critical field for infinitely strong anchoring, and the distorted state eventually
becomes unstable with respect to the undistorted configuration as the strength of the applied field is fur-
ther increased. For small K;; no spontaneously deformed state occurs and the critical field of the
Fréedericksz transition is merely found to be shifted from its value for K3 =0. The possibility of experi-
mentally observing some of these effects is also briefly discussed.
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I. INTRODUCTION

In the continuum theory of nematic liquid crystals,
small departures from a uniform director texture n, are
described in terms of the bulk Frank elastic constants
[1-3] K;;,K,,, and K3;. These give the changes in the
free energy to order (8n)? associated with splaylike, twist-
like, and bendlike distortions, respectively. In addition to
the usual Frank terms, there are two terms of the same
order in (8n)? which can be expressed as divergences, and
which introduce two further elastic constants, conven-
tionally named K,; (splay-bend) and K,, (saddle-splay)
[4]. These appear to have been introduced first by Oseen
[1], were subsequently abolished by Frank [3], and were
then reinstated by Nehring and Saupe [4], to whom we
owe the standard nomenclature. The corresponding con-
tributions to the integrated elastic free energy can be con-
verted to surface integrals by the use of Gauss’s theorem,
and therefore these terms are often neglected in physical
analyses, since they do not enter the Euler-Lagrange
minimization equations; this point is discussed in more
detail in [5]. There is, however, no fundamental reason
why K; and K,, should vanish or be negligible; indeed,
several different microscopic calculations have yielded for
either constant values of the same order of magnitude as
the usual bulk constants [6—-8]. Moreover, recent work
suggests that K,, may give rise to some physical effects
[9-12]. An intensive reexamination of the consequences
of a nonvanishing K,; has been carried out in recent
years by Hinov and Derzhanski [ 13-22], and by Barbero
and co-workers [23-34].

We have embarked on a program aimed at clarifying
the status of K5 in the elastic theory of nematics. In [5],
one of us has presented a detailed analysis of the K3 and
K,, surface terms and discussed the problem of minimiz-
ing a free energy containing such terms. In [8], we have
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evaluated the surface constants of a simple model nema-
togen using a microscopic theory, and shown that they
are of the same order of magnitude as the usual bulk con-
stants. We have also argued that the results thus ob-
tained are essentially unambiguous. In this paper we
work out some consequences of the presence of a K3
term in the nematic free energy. Some of our predictions
are quite counter intuitive, or even exotic, and we make
no claims as to their experimental realizability. Rather,
we show that they follow from the widely used Landau
theory of second-order transitions. At worst, our results
can be interpreted as providing theoretical constraints on
the magnitude of K |5, which, we hope, will stimulate fur-
ther research.

This paper is organized as follows: in Sec. I A we dis-
cuss the paradox associated with the inclusion of the K ;
term in the nematic free energy and briefly indicate how
it can, in our view, be resolved. In Sec. II B we work out
the Landau theory of field-induced transitions in a thin
nematic layer and show how the standard results are
affected by the inclusion of the K5 term; in particular, a
spontaneously deformed (i.e., zero applied field) state is
predicted to occur in sufficiently thin films, for values of
K, /K ;; compatible with those obtained from our recent
microscopic calculation [8]. This spontaneous deforma-
tion is weakened, and eventually destroyed, by the appli-
cation of a magnetic field which would enforce the
Fréedericksz transition [35]. Finally in Sec. III we give a
critique of our results and make some concluding re-
marks.

II. ELASTIC THEORY OF NEMATICS FOR K ;70
A. The Oldano-Barbero paradox

The Frank-Oseen elastic free energy can be written
[1,2] as
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F= d + [ ds + , 1) tisfactory. . '
f v v fr f 8 (f134/24) Recently, one of us has achieved a resolution of the

where the integrals are taken over the volume %V and the
surface & of the nematic sample, the f term corresponds
to the usual bulk Frank energy, and f,;,f,, are surface
terms associated with the constants K ;; and K,,, respec-
tively:

fr=1K.(V-n)*+1K,[n(VXn)]

+1K3;[nX(VXn)]*, (2a)
f13=K;3v-n(V-n), (2b)
fr=—(Kyp+Ky v [nV:n+nX(VXn)], (2¢)

where v is a unit vector normal to the surface.

The terms involving K,,, and in particular K3 have
presented  previously  unsuspected  mathematical
difficulties due to the fact that they contain derivatives of
the nematic director, n. Standard variational analysis
deals only with functionals, the surface parts of which do
not contain any derivative-dependent terms. In this case
minimizing a functional of the type given in Eq. (1) is
equivalent to solving the bulk Euler-Lagrange equations;
the boundary conditions on n are similarly obtained by
minimization at the surface. (Note that it is always possi-
ble formally to derive Euler-Lagrange equations for any
functional, although their solutions do not necessarily
minimize the functional. We shall come back to this
point later.) In this respect, Oldano and Barbero [26,29]
have made the important point that the term f,; in Eq.
(2b) leads to infinitely strong subsurface deformations.
Pergamenshchik [5] has interpreted this result as a conse-
quence of the fact that f; is unbounded from below, the
conventional minimization procedure thus involving
finding a saddle point, rather than a minimum, of the
functional given in Eq. (1). Clearly this casts consider-
able doubt on the validity of the conventional boundary
conditions, as well as on the role, and even the existence,
of the surface elastic constant K 5.

An interpretation of the f; term must involve resolu-
tion of the Oldano-Barbero paradox. Hinov [18,19,22]
has postulated that physical content should only be as-
signed to the relevant Euler-Lagrange equations, which
nevertheless do not yield a minimum energy
configuration, as mentioned above. On a different note,
Barbero, Madhusudana, and Oldano [27] have argued
that some fourth-order terms should be retained in the
elastic free-energy expansion which would restrict the
amplitude of deformations at the surface (or, equivalent-
ly, bound the free energy from below). The strong (but
finite) subsurface deformations thus predicted by these
authors are, however, rather difficult to accommodate in
a continuum theory, in which smooth variations over
mesoscopic length scales are assumed [5]. Moreover, the
question arises as to which fourth-order terms should be
retained; if all, that would mean including new diver-
gencelike terms in the theory, with the result that the to-
tal free energy would again be unbounded from below.
The same is true of the total contribution of any finite or-
der [5]. Thus neither of the above ideas seems entirely sa-

Oldano-Barbero paradox by summing terms to all orders
in the expansion of the elastic free energy. The details of
this procedure are being published elsewhere [5]; here it
suffices to say that the sum R, of all higher-order terms
acts as a regularization term which bounds the free ener-
gy from below and suppresses unphysically strong sub-
surface deformations. It is found that the equilibrium
director configuration is given, to order (&n)?, by the
Euler-Lagrange equations associated with the functional
of Eq. (1) (which are taken formally and do not result
from any minimization procedure, since, as we have seen
above, the functional in question has no minimum).
Moreover, no information on R, is required; hence no
new constants need to be introduced into the theory to
provide the missing lower bound. An important conse-
quence is that the surface elastic constant K; is a well-
defined physical quantity, hence amenable, at least in
principle, to experimental determination. In a previous
paper [8], we have predicted, on the basis of a microscop-
ic theory of nematic elasticity, that K3 should be of the
same order of magnitude as the bulk constants K;
(i=1,2,3). We thus seek an experimental situation in
which K3 would play a prominent role. To this we turn
in the next section.

B. Field-induced transitions in a nematic layer
for nonzero K |3

The most important manifestation of surface energy in
nematics comes from the anchoring energy w(©,), where
O, is the angle between the director at the interface and
the easy axis on the surface. In what follows we shall as-
sume the anchoring energy to be given by the simple
Rapini-Papoular [36] form, viz.

w(O,)=1wsin’O; . 3)

Unlike f; and f,4, the anchoring energy depends on O,
rather than on gradients thereof. Nevertheless, Lavren-
tovich and Pergamenshchik [10,12] have shown that the
formation of striped domains in hybrid aligned nematic
layers can be explained quite naturally if K,,50. More-
over, Allender, Crawford, and Doane [11] have found
that textures in nematics confined to cylindrical regions
cannot be consistently interpreted without invoking the
existence of a nonzero K,,, if known values are used for
the bulk elastic constants. Still a more dramatic exhibi-
tion of the surface terms would involve a qualitative,
rather than a merely quantitative, effect. We now
demonstrate the existence of such an effect in the case of
K ;.

Consider a nematic layer of uniform thickness d
sandwiched between two identical, weakly anchoring sur-
faces at z==d /2 (we take the z axis to be perpendicular
to the surfaces). Suppose that homeotropic anchoring
[37] is favored at both surfaces with equal strength (the
treatment is identical in the case of planar anchoring).
The orientation of the director in the nematic layer is de-
scribed by the tilt angle 6=06(z), which the director
makes with the normal to the surfaces; we neglect azimu-
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thal anchoring. In this geometry the director depends
upon only one Cartesian coordinate, hence the contribu-
tion of the K,, term vanishes [9]. If a magnetic field of
strength H is now applied in the x direction, the layer
will remain undistorted if H <H,; for H > H,, the so-
called Freedericksz tranmsition occurs: 6(z)70, with a
maximum at z =0 (in the midplane of the sample). The
threshold field H,;, is the root of the transcendental equa-
tion [36]

J
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u cotu , 0=u=<w/2, 4)

2Ky,

where u =dq /2, q=(x,H?/K;;)"/? and x, >0 is the an-
isotropic part of the magnetic susceptibility. Equation (4)
is known as the Rapini-Papoular equation [36].

The free energy (per unit area) of the nematic layer in-
cluding the K |5 term is given by

F=1 f_";iz dz[(K \;sin20+K 13c0520)0"2— x, (n-H)*] + Lw(sin®, +sin20,) — 1K |, (6}sin20, — 0)sin26, ) , (5)

where the primes denote differentiation with respect to z
and the subscripts 2,1 correspond to quantities measured
at the surfaces z==d /2, respectively. As the transition
is usually continuous, we may assume 6(z) to be small
everywhere and solve the linearized Euler-Lagrange
equation,

K30"+x,H*6=0, (6)

with the solution

We shall see later that the assumption of small 6 is indeed
justified a posteriori. In the standard treatment of the
Fréedericksz transition, it is assumed that the layer has
mirror symmetry around the plane z =0 and only the
even (or symmetric) solution, 8,(z)=N cosgqz, is retained
[33]. We shall show, however, that for sufficiently large
K |5 a parity-breaking mode 6 4(z)= A singz can be excit-
ed which is odd (or antisymmetric) with respect to z =0
(see Figs. 1 and 2).

We now construct a Landau theory of the transition.

0(z)= A singz + N cosgz . (7)  To this end we expand Eq. (5) to order 6* to obtain
J
F~F,+F, , (82)
Fy=1 [ dz(K 3,07 —x, H*0))+ Lw(62+63)—K 13(6,0,—0,0}) (8b)
272 ), , % 0 Xa ;w01 T 03 13L6,0,—0,61),
ds2 , 1 1 2 , ,
F,=1 f“d/zdz (K11~K33)0202+§X0H204 —gw(9?+9‘2‘)+§K13(9392—9f91)- (8c)

Equations (7) and (8b) can now be combined so as to reex-
press F, in terms of 4 and N, yielding

Fy=c, 4A*+c, yN?, 9
where
€3, 4=q($K 33— K 3)sin2u +w sin’u , (10a)
¢y n=—q(LK33;—K 3)sin2u +w cos’u , (10b)
@) (b)
z
472

-d/2

FIG. 1. Normal (a) and parity-breaking (b) distortion modes
of a thin nematic layer between homeotropically aligning plates.

where, as before, u =dq /2. F, consists of the quadratic
terms in the free-energy expansion in powers of 4 and N.
These quantities are, in fact, order parameters in a Lan-
dau theory of the (continuous) Fréedericksz transition.
Note that no cross terms (i.e., terms involving products
of 4 and N) appear in F,.

The critical condition for a phase transition to occur is
that the coefficient of one of the quadratic terms should
vanish. The Fréedericksz transition obtains when c, y

(@) (b

42

FIG. 2. Same as in Fig. 1, but for planar aligning plates.
Note the nonsingular 7 wall in the midplane of the layer in (b).
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goes negative; this implies

—%(K33—2K]3)sin2u +w cos?u =0=—u = wd

If K33>2K 3, Eq. (11) is a generalization of the Rapini-
Papoular equation, Eq. (4), to the case K;70. In Fig. 3
we solve it graphically in the range 0 <u < ; the reduced
quantities d*=wd /K33, q*=qgK;3/w have been used.
Figure 4 illustrates the effect of K350 on the threshold
field of the Fréedericksz transition: we have used the
values of the elastic constants obtained from our micro-
scopic theory for a fluid of Gay-Berne [38] particles of
elongation k=3 and well depth ratio €, /€,=0.15 [8,38];
in this theory, K;; =K 33 and K3 >0.

If, however, K33 <2K 3 (Fig. 5), the Fréedericksz tran-
sition can only occur at ¥ =7 /2 (the threshold field for
infinitely strong anchoring). ¢, y crosses zero again at a
J

2
wu2_2L(2K13—K33)<0==d < % [K13—‘%K33 ]zd

d

2(K3;—2K3)
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cotu . (11

—
value of u given by Eq. (11), which now describes the
demise, rather than the onset, of the normal distorted re-
gime.

We now consider ¢, 4. Clearly, if K33 > 2K ; this term
is positive for 0=u <1 /2 and the system will undergo a
Fréedericksz transition rather than deform anomalously.
If K33 <2K 3, the anomalous parity-breaking state will be
realized ifc, 4, <Ofor0=u =mw/2,i.e,

w Sinzu _%(2K13 _K33 )Sin2u <0. (12)

At very low fields (u << 1), this yields

¢ (13)

i.e., for given values of the elastic constants and anchoring strength, a spontaneously deformed state is realizable if
d <d, (i.e., for sufficiently thin films), provided K3 > K33 /2. In Fig. 6 we plot ¢, 4 as a function of u; the spontaneous

deformation is suppressed if

wd

2 u .
— (2K —Ky)sin2u —u =St
w sin“u d( 13 33)sin2u=u 20K, N

If u is small nevertheless, we can expand about ¥ =0 to
obtain the limiting behavior of the critical field H. which
destroys the spontaneously deformed state,

172
1 d
H ocg ~— [1—2- 15
c qc d dc ’ ( )

where we have used

3

u
tanu ~u +— ,

3 (16a)

0.0 0.5 1.0 1.5 2.0 25 3.0

FIG. 3. ¢yy=c, n/w vs u for K33 >2K3; the Fréedericksz
transition obtains for 0<u <7 /2.

tanu —u = ditanu . (14)

~14+ . (16b)

We have thus arrived at the paradoxical result that a
magnetic field applied along the x axis tends to align a
nematic with positive magnetic anisotropy perpendicular
to itself. This is a consequence of the fact that the

0 5 10 15 20
d*-1
FIG. 4. Fréedericksz threshold field vs inverse thickness (in
reduced units: see text) for a Gay-Berne model nematogen be-
tween homeotropically aligning plates. At p*=0.65, T*=0.07,
microscopic theory [8] gives (K;3/K)pui;=0.31. Solid line:
K3 /K =0; dashed line: K |3 /K =(K 3 /K )pjicr-
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0.0 05 10 15 20 25 3.0
u
FIG. 5. c5y=c,y/w vs u for K;; <2K;; the onset of the
Fréedericksz distorted state is now at u =7 /2; the distortion is
suppressed for u > ul > /2.

relevant quantity describing the elastic response of the
nematic is no longer K ;; but an effective bend elastic con-
stant KT =K;,—2K;, so for K;;<2K,; the layer
behaves as if it had a negative bend constant: energy has
to be expended in order to produce an undeformed state.
It would be interesting to investigate the dynamical
mechanism by which this effect may be achieved.
Furthermore, it follows from the discussion of Egs. (11)
and (12) that the normal (Fréedericksz) and parity-
breaking modes cannot be excited simultaneously, i.e., in
J

q sindu 3 sin2u
C4,A*S(K11 K33) |u 4 g'Ksa i b

sindu 3 sin2u

c4,N:%(K11_K33) u_T. +%K33 Zu_*__T_

Figure 7 shows the Fréedericksz phase diagram in the
case K3 > K33/2; we have again used values of K3; and
K,; from our microscopic theory [8], for the same
elongation and well depth ratio as in Fig. 4, but at a
different temperature. What happens when the field is in-
creased beyond that which destroys the normal distorted
state is open to question. In principle, there is nothing to
stop us from solving Egs. (11) and (14) at still higher
fields, thus obtaining a sequence of alternate normal
deformed —undeformed (d>d.) or anomalous
deformed-undeformed—normal  deformed (d <d,)
domains, as the field is increased. If such an exotic effect
could be observed, it would provide substantial evidence
in support of the existence of a K; term.

In order to characterize the transitions we need to
define a suitable order parameter. Since we are neglect-
ing twist deformations, we assume that the director al-
ways lies in a single plane, which we take to be the xOz
plane. If we write the (uniaxial) nematic order-parameter
tensor in the usual form [37],

Q(z)=4Q(3nn—1), (19)
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0.0 05 1.0 1.5 2.0 25 3.0
u
FIG. 6. ¢5 4=c, 4/w vs u for K;; <2K;; the anomalous
parity-breaking distorted state is stable for u <u f <7 /2.

the same range of u. Setting 4 and N alternately to zero
in Eq. (7), we can compute the free energy of the normal
and parity-breaking distorted states, respectively. The
use of Egs. (8) and (9) then yields, to fourth order,

FNZCZ,NN2+C4,NN4 N (173)
Fy=cy 4A%*+c, 4 A%, (17b)
where ¢, 4 ¢, y are given by Egs. (10) and
sindu 2 . . 1 .
6 + ?qKUsmzu sin2y — W sin*u , (18a)
Llllgl - %qK”coszu sin2u — %w cos*u . (18b)
1201

100 1

80

0 5 10 15 20
g*!

FIG. 7. Fréedericksz phase diagram of a Gay-Berne model
nematogen between homeotropically aligning plates. At
p*=0.65, T*=0.085, microscopic theory [8] gives
(K13/K )picr=0.57. A, anomalous deformed regime; U, unde-
formed regime; N, normal (Fréedericksz) regime. See text for
discussion.
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0.06 1

0.05 1

0.04 4

0.02 1

0.01 1

0.0 1

FIG. 8. Order parameter i vs ¢* for d*=0.1 in Fig. 6. 4,
anomalous deformed regime; U, undeformed regime; N, normal
(Fréedericksz) deformed regime.

where Q is the scalar nematic order parameter and | is
the unit tensor, then a suitable order parameter will be

1
¢=(Qxx_ny>=E fd/z

dz3sin%0(z) (20)
—dr2 2

where perfect orientational order along n (i.e., Q =1) has
been assumed. The amplitudes of the normal and parity-
breaking modes, N and A4, are found by minimizing the
free energy, Egs. (17), with respect to N and A, respec-
tively. We obtain

SN €2, 4

, A=——""— . 21
2c4 N 2¢4 4 21)

In Fig. 8 we plot ¥ as a function of magnetic field for
d*=0.1, which lies in the range where anomalous transi-
tions are allowed. If we take K3;~2X107°% dyn and

FIG. 9. Fréedericksz threshold field vs inverse thickness (in
reduced units; see text) for a Gay-Berne model nematogen be-
tween parallel aligning plates, at the same temperature and den-
sity as in Fig. 6: (K;3/K )y;r==0.57. Solid line: K,;/K=0;
dashed line: K3/K=(K,;3/K)pi; dotted line: K;/K
=2(K 13 /K )ic: (compare with Fig. 3).

PERGAMENSHCHIK, TEIXEIRA, AND SLUCKIN 48

w=2X10"% erg/cm?, then £=K;;/w~10"3 cm and
d=£&d*~10"* cm. On the other hand, ¥~ (6%) ~0.06,
hence 6~ 10°, which should be observable.

All the above results pertain to a homeotropically
aligned film. The planar case can be treated in exactly
the same way by writing Eq. (5) in terms of 8=1/2—6,
and it is easily shown that all relevant expressions can be
obtained from the corresponding homeotropic ones by
making the substitutions K33 —K;, K;3— —K 3. Hence
the parity-breaking mode is now allowed only if K;; <0
and |K ;| > K, /2; this same mode now leads to the ap-
pearance of a nonsingular 7 wall in the midplane of the
sample. In Fig. 9 we illustrate the effect of K ;50 on the
threshold field of the Fréedericksz transition in a planar
geometry; the same microscopic theory [8] has been used
for the elastic constants, and the reduced quantities are
now d*=wd/K,, q*=q¢K, /w. Note that K;;3;>0
raises the critical field of a homeotropically aligned layer
while lowering that of a parallel aligned one (compare
Figs. 4 and 9).

III. DISCUSSION AND CONCLUSIONS

We have developed a simple Landau theory of field-
induced transitions in a thin nematic layer including the
K|; term in the Frank elastic energy. We have shown
that a small K;;>0 shifts the critical field of the
Fréedericksz transition by renormalizing the relevant
bulk elastic constant. The shift is upwards in the case of
a homeotropically aligned layer, and downwards for a
parallel aligned one. However, if K;3>0 and
K3>K;;/2 (homeotropic geometry) or K;3; <0 and
|K 31> K, /2 (planar geometry), a spontaneously (i.e.,
zero field) deformed state is predicted to occur in addi-
tion to the wusual Fréedericksz deformed state, in
sufficiently thin layers (this phenomenon bears some
resemblance to that encountered, as early as 1979, by
Hinov and Derzhanski, in the context of a nonlinearized
theory of the electric-field-induced Fréedericksz transi-
tion [17,39]). The existence of this anomalous distorted
regime also affects the Fréedericksz transition, leading to
a rather exotic phase diagram where the applied field al-
ternately enhances and inhibits distortions.

In this paper we have restricted ourselves to the one-
dimensional problem. A more rigorous analysis would
have to take into account the possibility of out-of-plane
(twistlike) distortions; if these are energetically favored,
the whole picture we have described might change sub-
stantially. This work is in progress.

Clearly much work still needs to be done before these
issues are fully understood. Nonetheless, by working out
in some detail the consequences of such a term using a
simple theory of phase transitions, we feel that we have
made a case for further investigations, both on the
theoretical and on the experimental fronts. At present,
there is no consensus over whether the K;; term in the
free energy exists at all, and if so, whether it can be calcu-
lated unambiguously from a microscopic theory [40]. A
density-functional theory of nematic elasticity could help
clarify this point, which is a consequence of the fact that
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the usual description in terms of the Frank elastic con-
stants does not take into account the detailed microscop-
ic structure of nematics. Such an approach would also
allow a detailed investigation of the dependence of K;
and K, upon the features of the intermolecular poten-
tials. On a different level, it would be interesting to know
how the dynamic behavior of nematics is affected by the
existence of a K3 term and the associated energy minimi-
zation problems. Experimentally, we believe the most
promising method for observing any of the effects pre-
dicted in this paper would be the wedge-cell technique

[41,42], in which the thickness of the layer can be varied
continuously.
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